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1. Introduction

The study of orbital dynamics of spacecraft about non-spherical bodies has usually been
restricted to the “planetary” case where the body is close to anoblate spheroid, with only
a relatively small degree of equatorial ellipticity. When investigating; spacecraft dynamics
about asteroids, the situation is drastically different as the asteroid shape is usualy very
distended with many irregular features. Research into the dynamics of particles about
asteroids accounting for their generalized shape has only been initiated relatively recently
(I, (4], [5]). This communication outlines an algorithm to compute Poincaré maps and
their associated monodromy matrices about arbitrary shapes. This capability is vital for
systematic investigations of motion in this problem.

2. Problem Formulation

The equations of motion for a particle about an asteroid are nost convenient in an asteroid-
fixed coordinate system as the asteroid gravity field may be evaluated without transforma-
tion. Conversely, if stated in an inertial frame, the potential becomesan explicit function
of time.

Denote the body-fixed position vector as r and the |)ody-fixed velocity vector as r=v.
The Lagrangian of the particle in the body-fixed system is:

L(r,iy0) = %(i- O xT)-(F4 Qx1) 4 Ur) @

where §2 is the asteroid rotational velocity vector expressed in the body-fixed frame and U
is the gravitational force potential of the asteroid. The system may be expressed in Hamil-
tonian form via the well-known Legendre transformation. The Hamiltonian expressed in
lLagrangian variables is:

J o= Eeb g (@x0) (@xr) - U(r) @



Taking the time derivative yields:

J = Q-4 2xr)xr] (3)

If the asteroid is rotating uniformly, then|f2| is constant (and is directed along a prin-
cipal moment of inertia), and the Hamiltonian is conserved. T'his case has analogies with
the 3-dimensional restricted three-body problem, although it has none of the geometric
symmetries present in that problem. Still, it is possible to define zero-velocity surfaces,
compute equilibrium points and periodic orbit families and to compute stability parame-
ters [4].

If the asteroid is not uniformly rotating, then Q is a time-periodic function in the body-
fixed frame (assuming that external torques on the asteroid are negligible). The motion of
Q follows a well defined path described by elliptic functions [2]. In this case the equations
of motion are time-periodic and the Hamiltonian is not conserved. This case has analogies
with the elliptic three-body problem, although it alsolacks the geometric symmetry present
in that problem. Analysis of this problem is more difficult than the uniformly rotating case,
although the computation of Poincaré maps is simple, as explained later.

The asteroid gravitational force potentials are generally derived from shape models
with an assumed value of constant density, Givenan asteroid shape and density, there
are two fundamental approaches to constructing the force potential. The most common
way is to expand the potential in a spherical harmonic expansionaid directly compute
the coefficients of the gravity field by evaluating integrals over the su. face of the asteroid.
Such an expansion is always truncated at some order, and thus is never a true representa-
tion. Additionally, the series expansion does not converge wheninside the smallest sphere
circumscribed about the asteroid and thus is not useful for studyingtae gravitational field
close to the body.

A second way to model the potential is to discretize the asteroid shape into N tetra-
hedra. Then, using the closed-form solutions for the potential of a tetrahedron [6], the
potential is found by summing over al the tetrahedra. This approach' is more time inten-
sive, yet is an exact result for a given asteroid discretization. Morcover, as this potential
satisfies lLaplace’s equation external to the body and Poisson’s equition internal to the
body, it is an excellent candidate for evaluating motion close to or on the asteroid surface.

3. Numerical Computation of Poincaré Maps

To compute and continue families of periodic orbits and to ascertain their stability it
iS necessary to compute Poincaré maps and their associated monodromy matrices [3].
Due to the generic irregularity of asteroid shapes there are no geoinetrical symmetries
with which one may reduce or simplify the dynamical problem. Also, the construction
of canonical coordinates closc to actiori-angle variables is, in genera!, impossible due to
the large deviation of the system from integrable cases. Thus one must develop numerical
approaches to take the place of analytic reductions.

If the central body is undergoing non-uniform 1otation,then the computation of
Poincaré maps is simple, as the period of the body-fixed rotational velocity vector is used
as the Poincaré surface, reducing the 4DOF Hamiltonian system to a 3DOY Hamiltonian
mapping. Then in the vicinity of periodic, orbits the full 6 x 6 state transition matrix of the
Lagrangian systcm will generically not have unity eigenvalues and canbe used to converge
upon fixed points in the 6 dimensional mapping.




in the case of a uniformly rotating asteroid the choice of a Poincaré surface is not as
obvious, and in the neighborhood of periodic orbits the 6 x 6 state transition matrix has
two unity eigenvalues. In this situation a 4-dimensional Poincaré map must be defined and
its attendant 4 x 4 monodromy matrix computed. Inthe following discussion a numerical
procedure to do this is outlined in terms of Lagrangian variables.

3.1. FOILMULATION

Assume a Lagrangian description in Cartesian coordinates as this is the simplest system
to work with from a rumerical point of view.

ri = 1;(t, To, vo), vi= vi(t, 1o, vo); i = 1,2,3 (1)

Also assume that the asteroid is uniformly rotating, and thus the}]amiltonianJ(l'av) =C
is conserved. Also define the more restricted coordinate set:

I{i = R,’(t yTo ,Vo)v Vi = V,‘(t, Ty, Vo); 1= 172, 3; 7[ 1 (5)

where I is an integer to be specified later.

3.2. POINCARE MA}’ DEFINITION

Choose a plane of interest tangent to one of the fundamental coordinate planes, r; =c,
where I is the index mentioned previously. Assume that a particle started on this surface
at time t = O will return to it at a future time t = T, and that the trgectory is transverse
to this plane at both crossings (VI(0), vi(7)# O). The time 7" is imnp.icitly defined by the
mapping between r;(0) = ¢ and r;(7)=¢.Due to the transversal assumptions and the
form of the Jacobi integral, VI may be solved for as a function of the Jacobi constant C.
Performing these reductions produces a 4-dimension P'oincaré map parameterized by the
Jacobi constant C and the choice of Poincaré surface (c and 7):

[Ri(0; C, ¢), Vi(0; C, ¢)] - [Ri(T5C,¢), Vi(T5C,0)) (6)

3.3. MONODROMY MATRIX COMPUTATION

Now the 4 x 4 monodromy matrix associated with the above Poincaré map is derived.
Recall the definition of the state transition matrix @(t):

' O(r(1), V(1) ; /v, _
(1) = 5@(0,;(53‘1’(1), ®(0)=U ()

where U denotes the identity matrix. ® isa 6 x 6 matrix and is most easily understood as

the partial derivative of the state of the Lagrangian system at timel with respect to the
state of the Lagrangian system at time ¢ = O. g'bus,

] - wenlz]

will be reduced to the 4 x 4 monodromy 1natrix of the Poincaré map in Equation 6, the

form of this map will be
IR IR,
[w] *A[av(,] ©)




3.3.1. Reduction to the Poincaré Surface

First specify r;(0)= 0, thus constraining {}e injtial conditions to remain on the Poincaré
surface. Next force the first return mapping to remain onthe Poincaré surface. To do this
a time variation in the map must be introduced, yieldiyg:

[6r(7‘+67‘)1 - o) [5viro ] +

§v(T + 6T)

(o)

The condition to enforce is:

T) rJ_ T = 0 (11)

where @; denotes the Jth row and ¢“ denotes the Jthcolumn of the matrix . This
equation may be solved for é7°, due to the assumed transversality ¢i the Poincaré map,

yielding:
§R(T + 6’]‘1 _f e
§v(T + 6T) ( vi(T)
i’j = ],,637[1

a 5 x 5 map which takes the Poincaré surface to itself in a neighbortood of the nominal
map,

o) [ g

3.3.2. Energy Reduction
To reduce Equation ]2 to an energy conserving 4 X 4 map it must be constrained to lie on
a single energy surface, corresponding to the condition:

O = JROR + Jy6V + Jy,8v; (13)

where Jis the Jacobi integral and J is the partia of J with respect to X. Due to the
transversality assumptions and the form of the Jacobi integral it is possible to solve for
the variation évyatt = O which constrains the mapping to a single ernergy surface. Due
to energy conservation the 5 variables at the first return to the surface will also conform
to Equation 13, and thus év;(7’) may be ignored as it can he reconstructed from the 4
other variables éR(7’) and 6V (T’).

Substituting for év;(0) and reducing theindeces results in the final monodromy map-

ping:
[25] =A[§5‘;] | (14)
- (o= [ 203 o)
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This map is energy preserving and carries a neighborhood of a Poincaré surface into itself.
When close to periodic orbits, this mapping does not generically have unity eigenvalues
and may be used to converge upon fixed points of the 4 dimensional Poincaré map.




3.4. RELATION TO A HAMILTONIAN SYSTEM

Applying the Legendre transformation to the original Lagrangian system, the matrix A will
retain its same numerical value, as for any given Poincaré map the iteins within the matrix
may be viewed as fixed parameters of the map. The variables éRandéV will transform
linearly to the corresponding Hamiltonian variables as the lLegend»e transformation is
linear in Cartesian coordinates, is invertibleand depends only oun parameters which arc
constant for the specific Poincaré map.

Thus IEquation15 is a similarity transformation away from a Ham:iltonian system, and
its eigenvalues may be interpreted as the eigenvalues of a Hamniltonic.a systemi. This frees
one from computing explicit canonical transformations while allowiag one to utilize the
theoretical results from Hamiltonian systems.
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